بررسی حل معادلات عددی دیفرانسیل

بررسی حل معادلات عددی دیفرانسیل
دسته بندی | علوم انسانی |
فرمت فایل | docx |
حجم فایل | 89 کیلو بایت |
تعداد صفحات | 217 |
بررسی حل معادلات عددی دیفرانسیل
مقدمه – معرفی معادلات دیفرانسیل 4
بخش اول – حل عددی معادلات دیفرانسیل معمولی 20
فصل اول – معادلات دیفرانسیل معمولی تحت شرط اولیه 20
فصل دوم – معادلات دیفرانسیل معمولی تحت شرایط مرزی 66
فصل سوم – معادلات دیفرانسیل خطی 111
بخش دوم – حل عددی معادلات دیفرانسیل جزئی 125
فصل اول – حل معادلات عددی هذلولوی 128
فصل دوم – حل معادلات عددی سهموی 146
فصل سوم – حل معادلات عددی بیضوی 164
فصل چهارم – منحنی های مشخصه 184
مقدمه
معرفی معادلات دیفرانسیل
معادله در ریاضیات وقتی با اسم خاص و صورت خاص می آید خود به تنهایی مسأله ای را نمایش می دهد كه در آن می خواهیم مجهولی را بدست آوریم.
كاربرد معادله دیفرانسیل از نظر تاریخی با معرفی مفهوم های مشتق و انتگرال آغاز گردید. ساده ترین نوع معادله دیفرانسیل آن دسته از معادلاتی هستند كه مشتق تابع جواب را داشته باشیم. كه چنین محاسبه ای به پاد مشق گیری و انتگرال گیری نامعین موسوم است.
معادلات دیفرانسیل وابستگی بین توابع و مشتق های توابع را نشان می دهد. كه از لحاظ تاریخی به طور طبیعی از زمان كشف مشتق به وسیله نیوتن ولایب نیتس آغاز می شود. (قرن هفدهم میلادی). كه با رشد سریع علم و صنعت در قرن بیستم روشهای عددی حل معادلات دیفرانسیل مورد توجه قرار گرفتند كه توسعه و پیشرفت كامپیوتر ها در پایان قرن بیستم موجب كاربرد روش های تقریبی تعیین جواب معادلات دیفرانسیل در بسیاری از زمینه های كاربردی گردید كه باعث بوجود آمدن مباحث جدید در این زمینه شد.
نمادها و مفاهیم اساسی
اگر تابعی از متغیر حقیقی باشد و ضابطه آن و متغیر تابع یا مقدار تابع باشد، آنگاه مشتق با یكی از نمادهای نمایش داده می شود. همچنین مشتق دوم، سوم،… و ام آن نیز به ترتیب با نمادهای
نمایش داده می شوند. اگر تابعی از دو متغیر حقیقی باشد آنگاه مشتق های جزئی با نمادهای نمایش داده می شوند. همچنین اگر آنگاه مشتق های جزئی با نمادهای و یا
نمایش داده می شوند.
همچنین داریم:
كه این توابع مشتقات جزئی مرتبه دوم و مراتب بالاتر است.
همچنین برای توابع متغیر حقیقی داریم:
كه فرض می كنیم همه مشتقات جزئی تا مرتبه مورد نظر پیوسته باشند.
حال برای تابع از متغیر حقیقی با مقدار حقیقی را دیفرانسیل تابع گویند. اگر تابع از متغیر حقیقی باشد.
را دیفرانسیل كامل تابع گویند. كه در حالت خاص اگر از دو متغیر حقیقی با مقدار حقیقی باشد داریم:
قوانین ارسال دیدگاه در سایت